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SUFFICIENT MATRICES AND THE
LINEAR COMPLEMENTARITY PROBLEM

by

R.W. COTTLE, J.-S. PANG, and V. VENKATESWARAN

ABSTRACT

it this paper 4e-pe e answer two questions about solutions of the linear complementar-
ity problem (LCP). The first question is concerned with the conditions on a square matrix
M which guarantee that for every vector q, the solutions of LCP (q, M) are identical to the
Karush-Kuhn-Tucker poin s of the natural quadratic program associated with (q, M). In
answering this question we introduce the class of row sufficient" matrices. The transpose
of such a matrix is what wv-e*ll "column sufficient."?The latter matrices turn out to furnish
the answer to o second question which asks for the conditions on M under which the
solution set of (q, M) is convex for every q. In addition to these two main results, ; "d'seuss
the connections of these two new matrix classes with other well-known matrix classes in
linear complementarity theory.
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SUFFICIENT MATRICES AND THE
LINEAR COMPLEMENTARITY PROBLEM

by R.W. COTTLE', J.-S. PANG2 , and V. VENKATESWARAN3

1. Introduction.

The present investigation belongs to a long-standing tradition in the study of the linear
complementarity problem (q, M):

~q±Mz>O

v-.. z>O

zT(q + Mz) = 0.

A feasible linear complementarity problem (q, M) is one for which

F(q,M) ={z:q+ Mz >_ 0, z>0} 90.

Naturally, F(q, M) is called the feasible set of (q, M). The problem (q, M) is solvable if

S(q,M) = { z: z E F(q,M), zT(q + Mz) = 0, } $ 0.

In this paper, we introduce a class of matrices (called "row sufficient" matrices) which
characterizes a certain property of the linear complementarity problem. We say that a

matrix is "column sufficient" if its transpose is row sufficient, thereby obtaining a second
class of matrices. We demonstrate that the class of column sufficient matrices characterizes
another interesting property of the same problem. In addition to these two main results,
we discuss the connections of these two new matrix classes with other well-known matrix

classes in linear complementarity theory.

Matrix classes have always played a prominent role of the theory of the linear comple-
mentarity problem (LCP). Indeed, even before the LCP had been given a name, Samelson,

I Department of Operations Research, Stanford University, Stanford, CA 94305
2 Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, MD 21218
'AT&T Bell Laboratories, Holmdel, NJ 07733
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Thrall and Wesler [231 showed that for fixed M E R' xn, the LCP (q, M) has a unique
solution for every q C Rn if and only if M belongs the class P of matrices with positive

principal minors. This theorem is one of several wherein an interesting property of the

linear complementarity problem actually characterizes a class of matrices. Of course, by

virtue of the equivalence, the characterization goes both ways.

Our point of departure for this study is an analytic (as opposed to constructive) proof
technique that has been used by several authors for demonstrating the existence of a so-

lution to a feasible linear complementarity problem. This technique does not work in all

cases, but it does for linear complementarity problems involving positive seni-definite ma-

trices [3] among others [5]. This raises a question: What is the scope of the technique, i.e.,

the class of all matrices for which it works? Our characterization result (Theorem 4) shows
that this class consists precisely of the row sufficient matrices.

An extension of the existence result [3] is due to Adler and Gale [11 who show that a

feasible LCP (q, M) with a positive semi-definite matrix M has a nonempty convex poly-

-.' hedral solution set. This raises a second question: What kinds of linear complementarity
d., problems have convex solution sets? We give more than one characterization in answer to

this question. Interestingly enough, one such characterization is intimately related to the

answer to the first question. (See Theorem 6.)

2. The Associated Quadratic Program.

There is a close and much-noted connection between the LCP (q, M) and the quadratic

program
minimize O(z) = qTz + zTMz

subject to q + Mz >0 (1)

Sz>0.

The feasible set of (1) is precisely F(q, M). In order to compensate for the fact that M

may be asymmetric, it is customary to use the equivalent representation of the objective

function:

*, 4(z) = qTz + lzT(M +b MT)z. (2)

It is clear that for any M E R nxfl and q E Rn, any solution of (q, M) is an optimal solution

of (1). However, the converse of this observation is not valid unless the optimal objective

function value of (1) happens to be 0. Part of this paper will characterize certain instances
B . when any Karush-Kuhn-Tucker point of (1) will be a solution of the LCP (q, M).

The following lemma is extracted from the proofs of several earlier existence theorems.

2



*(Cf. [31, [4], [5].) It is included here because of its strong motivating influence.

Lemma 1. Let (q, M) be a feasible LCP. Then, the quadratic program (1) has an optimal

solution, z*. Moreover, there exists a vector u* of multipliers satisfying the conditions

q + (M + M)z* - M Tu* > 0 (3)

(z)T[q + (M + MT)z - MTu'] = 0 (4)

u" >0 (5)

(u*)T(q + Mz*)=0. (6)

Finally, the vectors z" and u* satisfy

(z - u),[MT(z* - u*)], 0 for all i = 1,...,n. (7)

Proof. Since (q, M) is feasible, so is the quadratic program (1). As the objective function

of the quadratic program is bounded below on the feasible region, it follows from the Frank-

Wolfe Theorem [9] that there exists an optimal solution to (1). Such an optimal solution

z*, together with a suitable vector u" of multipliers will satisfy the Karush-Kuhn-Tucker

conditions (3) - (6). (See [17].) To prove (7), we examine the inner product (4) at the

*, componentwise level and deduce that for all i = 1,... , n

z,[M T(z* - u)], <0 (8)

- using the fact that z* is feasible. Similarly, multiplying the i-th component in (3) by u*

and then invoking the complementarity condition u!(q + Mz*), = 0 which is implied by

(5), (6), and the feasibility of z°, we obtain

- u [MT(z * - u*)], !_ 0. (9)

Now, (7) follows by adding (8) and (9). U

Remark. Conditions (3)-(9) are satisfied by any local minimum for (1) and corresponding

vector of Lagrange multipliers. It is not necessary to assume that z" is a global minimum

for (1). As we shall see below, the stronger conclusion of global optimality may also be

inferred under some circumstances.

3. Sign Reversing.

From the standpoint of this paper, the most important conclusion of Lemma 1 is em-

bodied in the system of inequalities (7) which say that MT "reverses the sign" of zo - u*.

Credit for this terminology is due to Gale and Nikaido [13] who define concept as follows.

3
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Definition. The matrix M E Rnxn reverses the sign of the vector x E R n if X,(MAx), < 0

for all i = 1,...,n.

It helps the discussion somewhat to consider the set, rev M, of all vectors whose sign is

reversed by a given matrix M E R xn:

rev M - { x : xi(Mx)i !5 0, i = 1,... n}.

Note that for all M E R xn, rev M contains the zero vector. In general, rev M is a cone

(not necessarily convex) containing ker M, the kernel (nullspace) of M. The conditions

under which rev M and ker M are equal can be characterized through the notion of column

adequacy (defined below). A special result of this kind can be found in the 1962 paper [101

by Fiedler and Ptik who gave several equivalent conditions for a matrix M to belong to

P. One pair of them (namely, 1° and 20 in their Theorem (3,3)) amounts to saying that

ME P if and only revM = {0}.

Several discussions in this paper concern submatrices and subvectors. Since such objects

are described in terms of rows and/or columns of specific matrices and vectors, this requires

the use of notation pertaining to index sets. Relative to the positive integer n, an index

set a is either a subset of {1,. .. ,n} of the form {il,. .. ,Zk where 1 < i1 < ... < iZ _ n

or else the empty set. If a C {1,..., n} is an index set, then a is the (complementary)

index set obtained by taking the elements of the set {1,... ,n} \ a in their natural order.

For a given matrix M and index set a, the matrix M,. (M. 0 ) denotes the submatrix of M

consisting of the rows (columns) indexed by a. When M E R"" , its principal submatrices

• can be expressed as M, where a C {1,. .., n}.

Definition. Let M E R"lX 'l be a matrix with nonnegative principal minors.4 Then M is

(i) row adequate if for all a C {1,...,n}

det M,, = 0 = the rows of M., are linearly dependent,

(ii) column adequate if for all a C .1..., n}

det M,,, = 0 - the columns of M,. are linearly dependent,

* (iii) adequate if it is row and column adequate.

"The class of real square matrices whose principal minors are all nonnegative is denoted P0 .

4
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The class of adequate matrices was introduced by Ingleton [141 to capture some of the

properties of positive semi-definite matrices vis-h-vis the LCP. In [15], Ingleton identified

the three matrix classes described in the preceding definition. The concept of row adequacy

also appeared in the work of Eaves [8], [9]. It is obvious that every P-matrix is adequate.

Ingleton [15, 1.2.3] noted the converse: every nonsinglar adequate matrix belongs to P.

The proof of this given in [5, Lemma 3] can be modified to show the following very slight

v generalization.

Lemma 2. Let M E R" f be nonsingular. Then M is row (column) adequate if and only

if AlE P. I

For ease of reference and as motivation for our new results, we state the following known

theorem in detail.
,%1n

• Theorem 3. Let M E Rnxn. Then

ii(a) Al is row adequate if and only if

,Z xj(MTx)j < 0 for ell i = 1,..,n ==,MTx 0 .

(b) Ml is column adequate if and only if

,. x,(Mx)<Oforalli=1,...,n = Mx=O.

Proof. Part (a) was proved by Eaves [8], [9, Lemma (20), p.622]. Part (b) follows from

part (a). M

There is a more elegant way to state Theorem 3. The matrix M E RnX is

* (a) row adequate if and only if rev MT = kerMT

(b) column adequate if and only if rev M = kerM.

These characterizations of (row and column) adequacy inspire the more general notion of

(row and column) sufficiency. Before giving the definition, we define a special mapping.
nDefinition. For An E RnXn, let hM : R" "b R be the mapping x -# x *Mx, the Hadamard

product of x and Mx. Thus, for every x E R ', hM(x) is the n-vector (x,(Mx),).

Note that for any M E RnXn,

revM = {x: hM(x) <_ 0).

%, % V %t ,. N



To facilitate the language, we let rev hM = rev M and then put

ker hM = {x: hM(x) = 0 }.

The relation ker hM C rev hM is automatic. When the reverse inclusion holds for the
M and/or MT, we get the notions of sufficiency.

Definition. The matrix M E RnX is

(i) row sufficient if

xi(MTx), < 0 for all i = 1,...,n = x(MTx)j=0foralli=1,...,n, (10)

(ii) column sufficient if

x,(Mx), < 0 for all i = 1,...,n = x,(Mx)j =0 for all i = 1,...,n, (11)

(iii) sufficient if it is row and column sufficient.

Alternatively, we can say that M E R'" n is

"" (a) row sufficient if rev hMr = kerhMT,
% %

(b) column sufficient if rev hM = ker hM.

Row sufficient matrices and column sufficient matrices must belong to the class PO.

This follows from the Fiedler-Pt.k [8] characterization of PO which says that the matrix

M E R'X n n Po if and only if for every nonzero vector z E R" there exists an index
k E {1,.. .,n} such that xa& # 0 and Xk(MX)k > 0.

We note the following facts.

(i) Positive semi-definite matrices are sufficient, but not necessarily adequate.

(ii) Row (column) adequate matrices are row (column) sufficient.

(iii) There are row (column) sufficient matrices which are neither positive semi-definite

nor row (column) adequate.

(iv) Every principal submatrix of a row (column) sufficient matrix is row (column) suffi-

cient.

0~6
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4. The Role of Row Sufficiency.

In Section 2, we saw (Lemma 1) that when the quadratic program (1) associated with

the LCP (q, M) is feasible, there must exist a Karush-Kuhn-Tucker pair (z ° , u*) such that
%MT reverses the sign of z' - u°.We now link this fact with the property of row sufficiency

of the matrix M.

Theorem 4. Let M E R"Xn. The following two statements are equivalent:

(a) Ml is row sufficient.

(b) For each vector q E Rn, if (z*, u*) is a Karush-Kuhn-Tucker pair of the quadratic

program (1), then z" solves the LCP (q,M).

Proof. (a) => (b). Effectively, it was shown in Lemma 1 that z" - u" E rev hMT. When M0

is row sufficient, z" - u" E ker hMT. Thus, for alls = 1,... ,n,

zfl[MT(z - u) = ui[MT(z° - U°)]i

Combining this with (4), (8) and (9), we deduce that

z*(q+Mz*)i=O foralli=l,...,n.

It now follows that z° solves (q, M).

(b) = (a). Suppose M is not row sufficient. Then there exists a vector x E rev hM T

such that x,(MTx) < 0 for some j. Without loss of generality, we may assume x2 > 0.

We now use the vector z to develop a contradiction to (b). To ths end, let z = x+, u =

x-, and q = -Mz'+(MTr) - . It is then easy to show that (z*, u') is a Karush-Kuhn-Tucker

pair for the quadratic program (1) defined by the given M and the constructed q. We now

obtain a contradiction. By construction, zi - 0 and (q + Mz*)j > 0, yet according to (b),

the vector z" solves (q, M). U

Remarks. This theorem has a some important implications.

1. Row sufficient matrices belong to the class Q 0 consisting of all real square matrices
Al for which the feasibility of (q, M) implies its solvability. Thus, we conclude that
row sufficient matrices belong to Po f Q0 and that every LCP of this type can be

"processed" by Lemke's algorithm [18]. See Aganagi and Cottle [2, p.230].

: . 7
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2. The row sufficiency property precisely delimits the class of matrices for which the

analytic existence proof technique via K-K-T pairs of the quadratic program (1) will

work. Thus, we have now answered the first question asked in Section 1.

3. The preceding remark and the existence of other matrix classes belonging to Q0

lead one to speculate about the possibility of finding other analytic methods. The

copositive-plus matrices introduced by Lemke [18] (see also Cottle and Dantzig [6])

exemplify a faniliar class of matrices that need not be row sufficient.

5. The Role of Column Sufficiency.

In this section we address our question on the convexity of the solution set S(q, M) of

an LCP (q, M). We begin with a preliminary theorem which is reminiscent of the Adler-

Gale [1] characterization of the solution set of (q, M) when M is positive semi-definite.

Much more general results were obtained by Jansen [16] who studied the structure of the

solution set of an arbitrary LCP (q, M). Jansen showed that S(q, M) is the finite union of

polyhedral sets.

Theorem 5. Let M E Rn~n and q E R"n be given. The following statements are equiva-

lent:

(a) The solution set of (q, M) is polyhedral.

(b) The solution set of (q, M) is convex.

(c) The equation

(zl)T(q + Mz2 ) = (z2 )T(q + Mz') = 0 (12)

holds for any two solutions zi and z2 of (q, M).

(d) There exist complementary index sets a and a contained in {1..., n} such that every

solution to (q, M) satisfies
q + M,z, = 0,

q6 + Me,,z, 0 (13)

za > 0,

Z's =0.

Proof. (a) = (b). This is obvious as all polyhedral sets are convex.

8
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(b) =: (c). Let z1 and z2 be any two solutions of (q, M). By the convexity assumption,

the vector z = rz' + (1 - r)z 2 is also a solution for any r E (0,1). By letting w' =

q + Mz' (i = 1, 2), we have

0 = [rw' + (1 - rlw2]T[rzl + (1 - r)z2] = r(1 - r)[(wl)Tz2 + (w2)Tzl]

from which (12) follows.

(c) =*. (d). The desired index set is

a = {Z : z, > 0 for some z E S(q, M)}.

It follows that i E 6 if and only if zi = 0 for all z E S(q, M). Let i E S(q, M) be arbitrary.

It suffices to show that tb = q,, + MXQi, = 0. Now choose an arbitrary i E a. Then z, > 0

for some z E S(q,M). By (12), with z1 = z and z2 = i, we deduce that ti, = 0. Thus

t = 0, and (d) follows.

(d) = . (a). Let Z denote the solution set of (13). Then Z is clearly a polyhedral subset

of S(q, M). E

Theorem 5 gives necessary and sufficient conditions for the convexity of S(q, M), but

only for the individual vector q. In the theorem below, we remove this restriction, thereby

obtaining a universal result in terms of M alone. The proof of the theorem is reminiscent

of Murty's proof in [21] of the Samelson-Thrall-Wesler characterization of the class P.

Theorem 6. Let M E R"x'.The following two statements are equivalent:

(a) For each vector q E R , the LCP (q, M) has a (possibly empty) convex solution set.

* (b) M is column sufficient.

Proof. (a) => (b). Suppose M is not column sufficient. Then there exists a vector

x such that xi(Mx) < 0 for all i = 1,...,n and xj(Mx) < 0 for some j. Now let

z = x+ and z 2 = x-. For brevity, let u+ = (Mx)+ and u- = (Mx)-. Define the vector

q = u+ -Mx + . Notice that q = u- -Mx- also. It is not difficult to verify that z' and z 2 are

both solutions of (q, M) with the so-defined q. Nevertheless, we have either z (q+Mz 2 )j > 0

or z2(q + Mz'), > 0 depending on whether xj > 0 or x3 < 0. This contradicts the convexity

of the solution set of (q, M).

(b) == (a). Let q E R' be given. We may assume (q, M) has at least two solutions, for

otherwise there is nothing to prove. Let z and z2 be two solutions of (q, M) and define

9
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wk = q + Mz for k = 1,2. Then, for each i 1,...,n, we have

0 > (z - Z -), - (Z1 - Z)MMW - (14)

By the column sufficiency of M, the terms on the right-hand side of (14) must equal zero,
and hence equality must hold throughout. In particular, z!w? = zw = 0 for i = 1,. n.
Since this is just a version of (12), the convexity follows. U

A characterization of sufficient matrices can now be obtained by combining Theorems 4
and 6.

Corollary 7. Let M E Rnxn. The following two statements are equivalent:

(a) For each q E R", the set of Karush-Kuhn-Tucker points of the quadratic program (1)
is convex and equal to S(q, M).

(b) M is sufficient.

Another way to look at the universal convexity question is through the geometry of
the complementary cones relative to M. Complementary cones were first introduced by
Samelson, Thrall and Wesler (231 and later studied in the LCP context by Murty (211. To
carry out this part of the analysis, we recall two important definitions.

Definition. Let A E R"' n . Then the positive cone spanned by A is the set

pos(A)={y: y=Ax, x>O}.

For any matrix A, pos (A) is a convex (finitely generated) cone. It is well known' that the

relative interior of pos (A) is precisely the set of all strictly positive linear combinations of

the columns of A. That is,

ri(pos(A)) = :y = Ax, z > 0. (15)

Definition. Let M E RX"
I be given. For each a C {1,..., n} let CM(a) denote the matrix

specified by

-M.if i E a
(CM(a))., = I.i otherwise

'See for example Rockafellar [22, Theorem 6.9].

10
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Sets of the form pos (CNI(a)) are called complementary cones (relative to M). (For discus-

sions of complementary cones relative to a single, fixed matrix, Al, we simplify the notation

by dropping the subscript M.)

The connection between complementary cones and the solvability of an LCP is well

known: An LCP (q,M) has a solution if and only if q E posC(a) for some a. In general,

two complementary cones C(a) and C(3) may be equal for distinct index sets a and 3.

Part of the following result asserts that this cannot be the case if S(q, Al) is convex for

every q.

Theorem 8. Let A1 E Rnx" . The following two statements are equivalent.

(a) For each vector q E R h, the LCP (q, M) has a (possibly empty) convex solution set.

(b) The distinctly generated complementary cones (relative to Ml) have disjoint relative

interiors; that is,

ri(posC(a)) nlri(pos(C(3)) = 0 for all a, 3 C { 1,...,n}, o#3.
."-

Proof. (a) =:. (b). Suppose there exist distinct index sets a and 3 such that

ri (pos C(a)) n ri (pos(C(O)) $0.

Let U = C(a) and V = C(3). We may assume that there is an index k such that U.k =

-I.k and V.k -M.,k. Now let q E ri (posC(a)) nri (pos(C(3)) be arbitrary. Then (as in

(15) above) there exist positive scalars Ai and pi (i = 1,... ,n) such that
n n

q = AiU.i = /JiV.i.
1 2=1

Define z ,w, z2, and w 2 by the rules

= t {,i = { 0 :Ea

0,i 0 1E& 6 w, = A iEi

z2 = { E3 0 ie 3

Z' W8=~ E

Thus, z , z2 E_ S(q, M)l. But k E d n 0. Hence

MI 11



-i which contradicts Theorem 5.

(b) : (a). Again, the proof is by contradiction. Suppose there exists a vector q E R"
such that S(q, M) is not polyhedral. Then there exist two solutions of (q, M) for which (12)

is violated. The idea is now to use this information to construct a vector 4 that belongs to
the relative interiors of two distinctly generated complementary cones.

From the above, it follows that

q = AU., = jV

where for some index k, we have U.k = I.k, V.k = -Mak, A, > 0, and /k > 0. Let
= { i: U.i = V.i I. Then we can write

q E ,U., + 2,U.,

=~~ I_,',v., + E Pv.,.

Next define the following index sets:

62={iE :,\=O, j, =0},

b3={i E 1,: Ai =0, Ili = 0},

64=iEj:, >O, r >O}.

By its definition, k E b4 which is therefore nonempty. Now, using the two representations

of q, define

4=q+ U.+Ev.,+ U.
iE61 U63  iE62  '6-

= E(A, + 1)U., + E V., + E U., + E AiU., + '(A, + 1)U.,
sebt iE62 iEbs :664 izE-

E, U., + 2(,i, + 1)V., + E U., + F:,,V., + F(I,, + 1)U.,.
'iE1 E2 iE63 iE64 iE-v

An examination of the index sets and the coefficients in these equations reveals that 4 has
been represented as a vector belonging to the relative interiors of two distinctly generated
complementary cones, namely C(a) and C(3) where k E & n o, thereby making a 6 fl.

12 .4



6. A Special Case.

Generally speaking, the implication (11) through which column sufficiency is defined

involves nonlinear inequalities and all vectors x E R'. In this section, we consider linear

complementarity problems (q,.Al) in which the matrix M belongs to Z, the class of real

square matrices with nonpositive off-diagonal elements. Much has been written about this

class of matrices in the LCP context and otherwise. See for instance (7] and the references

therein. The main result of this section, Theorem 9, shows that if M is a Z-matrix, then

the implication (11) can be restricted to only the nonnegative vectors x E R . In turn.

this restricted implication is equivalent to a finite set of linear inequality systems. The

-upshot of the theorem is that if M E Z, then the column sufficiency property of AI and

the universal convexity of solution sets of the associated linear complementarity problems

can be tested by a finite procedure. 6

*Theorem 9. Let M be a Z-matrix of order n. The following four statements are equivalent.

(a) For all q E R', if (q, M) is feasible, then S(q, M) is polyhedral.

(b) For all a C {1,...,nJ the system

0 : M,:,x, < 0, X" > 0 (16)

has no solution.

(c) For all x > 0, x E rev hM implies x E ker hM.

(d) The matrix M is column sufficient.

Proof. (a) = (b). Suppose (b) is false, i.e., that for some a, (16) has a solution i,,. We

shall now construct a solvable LCP (q, M) for which S(q, M) is not polyhedral. Indeed,

define a nonnegative vector q so that q, = -M 0  and q6 > - Now define 5 so

that i, = i, and i,5 = 0. Then i E S(q, M). Since q 0, it follows that 0 E S(q, M). But
q zT(q + MO) > 0, for i,. > 0 and 0 # q, > 0. We now have a contradiction, for by Theorem

5, S(q, M) must not be polyhedral.

(b) =* (c). If the nonnegative vector i belongs to rev hM and not to ker hM, then i must

be nonzero. It follows that a = { i : i, > 0 } is nonempty and ;,, is a solution of (16) in

contradiction to the hypothesis.

'The transpose of a Z-matrix is, of course, a Z-matrix. Hence, in this case, row sufficiency is also finitely
testable.
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(c) =: (d). Assume i E rev hM. Using the Z-property of M, we can show that

_>(M!). jij(MjIj), for all i = 1,...,n,

where Iii denotes the vector whose i-th component is I Thus, jil belongs to rev hM, and

since > _ 0, it follows from (c) that I I E kerhM. Accordingly, we have

I."-." 0 > :ij(Mi )j > Pi (Mli ) = 0 for all i = 1,... ,n.

Hence i E ker hM, as required.

(d) =: (a). This is immediate from Theorems 5 and 6. E

Example. We have observed that row and column sufficient matrices belong to P0 . We
might then inquire whether the converse holds for Z-matrices. Does M E Z n PO imply

that M is sufficient? (Since M E Z n PO if and only if MT E Z n PO, there is no point in

asking about row or column sufficiency separately.) The answer is "no," for the Z-matrix

M 0 0

has nonnegative principal minors, and the vector xT = (1, 2) belongs to rev hM \ ker hM. The
same vector with a = {1, 2} gives a solution to (16), showing that condition (b) of Theorem

9 is not satisfied. For results on linear complementarity problems with M E Z fl Po, see
Mohan 19], [20].

Linear complementarity problems with Z-matrices are known, to have two particularly
interesting features. First, they belong to the class Q0. Thus, whenever the polyhedral

set F(q, M) is nonempty, then so is S(q, M). Second, when F(q, M) is nonempty, S(q, M)

contains a vector z* such that z* < z for every z E F(q, M). The vector z* is called the
least element of F(q, M). It is clear that such a vector must be unique. Thus, a feasible

linear complementarity problem with a Z-matrix has a unique least-element solution. set.

As a concluding result, we show that the least-element solution provides an interesting
structural property of the solution set of a linear complementarity problem (q, M) in which

M is a Z-matrix.

Theorem 10. Let M E Z and assume that F(q, M) 6 0. Let w = q + Mz ° where z* is
the least-element solution of (q, M). Then

z E S(q, M) 4 z - z" E S(w*, M).

14



Proof. Let z E S(q, M). Then = z - z* > 0. Since z E S(q, M), we have

w" + M = q+ Mz* + Mt = q+ Mz _ 0.

Moreover,

0 < tT(w" + Mt) = (z - z*)T(q + Mz) = -(z*)T (q + Afz) _ 0.

This implies tT(w" + Aft) = 0 and hence that t E S(w*, M).

Conversely, let t E S(w', M). Then z = z* + t > 0, and

q+ Mz = q+ Mz" + Mt = w" + M > 0.

It follows from the definitions that

zT(q + Mz) = (z + )T(w* + Af (Z)T(W* + Me). (17)

Now if (w* + M), > 0, then , = 0 because t E S(w',M). This implies (M) < 0 since

-M E Z and z > 0. Combining these observations, we note that w? > 0 and hence z*' = 0.

Accordingly, we deduce that (z*)T(w * + MC) = 0, which by equation (17) implies that

z E S(w*, M). U

Remark. Theorem 10 says that S(q, M) = z" + S(w°, M). This is noteworthy for two

reasons. First, S(w*, M) is the solution set of a problem based upon an LCP in which the

constant column is a nonnegative vector. Second, the solution set S(q, M) is a translate (by

z*) of another solution set, S(w', M). Hence S(q, M) is polyhedral if and only if S(w*, M)

is polyhedral.
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the conditions on M under which the solution set of (q,M) is convex for

every q. In addition to these two main results, we discuss the connections

of these two new matrix classes with other well-known matrix classes in

linear complementarity theory.
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